rangle.

The Web Inverted

o

www.rangle.io

150 John St., Suite 501
Toronto, ON Canada
M5V 3E3

1-844-GO-RANGL

http://www.rangle.io

BUILDING AN ANGULAR]S
HACK STACK

Nick Van Weerdenburg Yuri Takhteyev
CEQ, rangle.io CTO, rangle.io

rangle.io 4

The Web Inverted

0 @ Some rights reserved - Creative Commons 2.0 by-sa, image credits on last slide.

http://www.rangle.io

RANGLE.IO is a lean/agile JavaScript development and
consulting firm focused on building next-generation
web and mobile applications for and with our clients.

CORE CAPABILITES

Continuous Delivery User Experience Design

lonic & PhoneGap Responsive Design

Angular]S Node.js

JavaScript

The Company History

Founded

2013

32+

developers &

20+ designers on the

team, 45 total
Successfully staff

completed
client projects

Leaders

in HTMLS &
JavaScript

Specialists

in cross-platform
application
development

What's a Hack Stack?

A setup that allows you to work with a
broken API delivered late.

OR

Allows you to build quickly with-out too
much investment in a back-end

Working with the backend AP_I

A common case: you build the client,
someone provides the API. -

What's a good RESTful API?
Who will test the API? Probably you!

- When will it be ready?

1

ge by tor

b
' L‘Idr

.

https://www.flickr.com/photos/tromal/6892743397

Translation Sheet

months.

- "We are working on it." You might have to comple;t
work before the API is ready. g
|

~ Prepare for the worst: a broke’n ,@
delivered late in the project.

https://www.flickr.com/photos/fuzzyyol/4884815233

Why Such Poor Predictions?

+ The existing API is low-level, and doesn't fit needs fc

APl and client access ! - } ..
| 3

* The prior data-base schema doesn’t map well to'th;e
REST API JSON document schema |

 Legacy business rules are scattered through- oui; th
view layer, resulting in a large effort to |mplement

|

https://www.flickr.com/photos/fuzzyyol/4884815233

“Hack Stack" to the Rescue

- A setup that allows you to work with a broken AP

late. ‘9

- Or work on a quick prototype ’

1Y

 Not a library or a tool - rather, a set of best p“,, tices hc ==
on our experience. -

https://www.flickr.com/photos/ejmc/4847838519

Hack Stack 101

Getting Started on the Hack Stack

Document the API

* Allows you to start making assumptions.

- Can unearth problems that would later lead to dela

- Apiary.io can be useful, but a Google Doc works fine

201NO S.H30IA0Hd NOILVWHOINI

!
l

NYHNNIYH ONISN SNINTNO NOILYNHOZNI ONIDONIHG

https://www.flickr.com/photos/joelogon/2123079156

Mocking the API |

» TDD: the first thing to try.

* Apiary.io etc: too limiting.
* A mock server: can work well, but expensivi

» Client-side mocking: our preferred solution.

https://www.flickr.com/photos/joelogon/2123079156

"

Scenario: The /tasks/ Endpoint P

\

* We expect to eventually have a /tasks/ endpoint that we

give us REST access to tasks. A

ZBIDGESTONE

look I‘i -1
be handle
‘) B

* Now we are waiting for the endpoint. PR '

* We've agreed on what the returned JSON w

* We've also agreed on how problems are goi

https://www.flickr.com/photos/joelogon/2123079156

Client-Side Mocking N B

* Leave our “tasks” service out of it. But have it proxy all of Af
calls through “api” proxy that will be in on the mocking. .

ZmIDGESTONE |

* Put mock data into “tasksMocksData” servil 1

* Put mock logic into “tasksMocks” service. P
modify data in memory.

* Refactor common logic into “mockEndpoint” service

* The “api” service (or similar) will direct APl requc
services when appropriate.

https://www.flickr.com/photos/joelogon/2123079156

The “Real” Service

.service(tasks', function(api) {
var service = this;
service.getTasks = function() {
return api.get('/tasks/');

}i

}) i

The Data - Keep It Separate

.value('tasksMockData', {

BASIC TASK LIST: [{
"taskId": "114a8455-3ea6-4d15-9el17-4£f51c0728£f9b",
"ownerId": "ece2l1bd8-c99f-49fc-alf0-5bc9bfb86ab9"”,
"description": "Make green eggs and ham.",
"date": "2013-03-04T21:42:36 +04:00"

| AR
"taskId": "1e387178-c22b-11e4-8dfc-aa07a5b093db",
"ownerId": "28a74904-c22b-11e4-8dfc-aa07a5b093db",

"description": "Fix the roof.",
"date": "2014-07-17T20:42:36 +04:00"

}]
}) i

Generating the Data

* http://www.json-generator.com/

» https://www.uuidgenerator.net/

» https://placekitten.com/

https://www.uuidgenerator.net/
https://placekitten.com/
https://www.flickr.com/photos/joelogon/2123079156

Trivial Mock Logic

.service(tasksMocks', function(tasksMockData, $q) {
var service = this;
var taskList = tasksMockData.BASIC TASK LIST;

service.getTasks = function() {
return Sg.when(taskList);
i
1)

m Make sure to return promises.

Mock Likely Problems

i

~

* Slow connection: mock with a timeout.
1

,
x_

 Dropped connection.

ZIDGESTONE

» Server-side errors.

» Loss of authentication. .3\

el
--‘-

!

. MY

https://www.flickr.com/photos/joelogon/2123079156

Mocking Latency

.service(tasksMocks', function(tasksMockData, mockEndpoint, $qg) {
var service = this;
var taskList = tasksMockData.BASIC TASK LIST;
service.getTasks = function() {
return mockEndpoint.waitRandomTime (80, 300)
.then(function() {
return taskList;

});
}:
});

m Control latency with a constant.

Mocking Dropped Calls

.service('tasksMocks', function(tasksMockData, mockEndpoint, $q) {
var service = this;
var taskList = tasksMockData.BASIC TASK LIST;
service.getTasks = function() {
return mockEndpoint.waitRandomTime (80, 300)
.then(function() {
return mockEndpoint.maybeDropConnection(0.50);
1)
.then(function() {
return taskList;

})i:

When the APl Arrives

One day, the real APl does arr ive.

Testing the API

- Test it with Postman.

+ Maybe test it with supertest.

| ée by torL'Idr
-~

https://www.flickr.com/photos/tromal/6892743397

Dealing with Changes

 Run the API server locally. (Easier with Vagrant') J
' 9
- Control your schedule.

- Settup a toggle between client-side mocks and the real
API. .

ée by tor‘ldr

.

https://www.flickr.com/photos/tromal/6892743397

- Mixing data from live APl and mocks.

1 9
- Filtering APl data through a mock layer. |
- Using a proxy server: e.g. for CORS. RS

x

Working in the Hybrid Mode i3

i

ée by torL'Idr
-~

https://www.flickr.com/photos/tromal/6892743397

Mixing Real and Mock Data

.service(tasksMocks', function(tasksMockData, mockEndpoint, $q,
users) {

var service = this;
var taskList = tasksMockData.BASIC TASK LIST;
service.getTasks = function() {
angular.forEach(taskList, function(task, index) {
task.ownerID = users[index % users.length].userIld;

})i:

return $qg.when(taskList);

Proxying the Server

var express = requlre(express');

var request = require(request');

var app = express();

app.all('/api/(*)', function(req, res) {

var url = 'https://api.example.com/v2/' + reqg.params[0];
reg.pipe(url).pipe(res);
1)

app.listen(8080);

m Surely not for use in production.

- Mixing data from live APl and mocks.

1 9
- Filtering APl data through a mock layer. |
- Using a proxy server: e.g. for CORS. RS

x

Working in the Hybrid Mode i3

i

ée by torL'Idr
-~

https://www.flickr.com/photos/tromal/6892743397

THANK YOU!

Nick Van Weerdenburg
CEQ, rangle.io

y @n1cholasv y @qaramazov

@ n1cholasv @ yuri

@) Yuri Takhteyev
o (IO, rangle.io

rangle.io v

The Web Inverted

http://www.rangle.io

Image Credits

i

SRR

m
=
-
ol
12
>
-
)
r
>
1z

T

Va

bytorki| : - by fuzzyyol by joelogon

by lincolnblues

Images licensed through Creative Commons 2.0 Attribution license.

https://www.flickr.com/photos/tromal/6892743397
https://www.flickr.com/photos/fuzzyyol/4884815233
https://www.flickr.com/photos/joelogon/2123079156
https://www.flickr.com/photos/ejmc/4847838519
https://www.flickr.com/photos/joelogon/2123079156

