
@rangleiowww.rangle.io

150 John St., Suite 501 
Toronto, ON Canada 

M5V 3E3

1-844-GO-RANGL

rangle.io
The Web Inverted

http://www.rangle.io

rangle.io
The Web Inverted

BUILDING AN ANGULARJS

CEO, rangle.io

Nick Van Weerdenburg

HACK STACK

CTO, rangle.io

Yuri Takhteyev

Some rights reserved - Creative Commons 2.0 by-sa, image credits on last slide.

http://www.rangle.io

RANGLE.IO is a lean/agile JavaScript development and
consulting firm focused on building next-generation
web and mobile applications for and with our clients.

Continuous Delivery

Ionic & PhoneGap

JavaScript

Node.js

User Experience Design

AngularJS

HTML5

Responsive Design

CORE CAPABILITES

Specialists

in cross-platform
application

development

20+
Successfully
completed

client projects

32+
developers &

designers on the
team, 45 total

staff

Leaders
in HTML5 &
JavaScript

Founded

2013
The Company History

What’s a Hack Stack?
A setup that allows you to work with a

broken API delivered late.

OR

Allows you to build quickly with-out too
much investment in a back-end

• A common case: you build the client,
someone provides the API.

• What's a good RESTful API?

• Who will test the API? Probably you!

• When will it be ready?

Working with the backend API.

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• "It's working now." It's working but hasn't been tested and will
probably be redesigned as the project unfolds.

• "We'll have it in a few days." You'll see the API in a few weeks or
months.

• "We are working on it." You might have to complete all of your
work before the API is ready.

Translation Sheet

� Prepare for the worst: a broken API  
delivered late in the project.

Image by fuzzyyol

https://www.flickr.com/photos/fuzzyyol/4884815233

• The existing API is low-level, and doesn’t fit needs for a REST
API and client access

• The prior data-base schema doesn’t map well to the future
REST API JSON document schema

• Legacy business rules are scattered through-out the prior
view layer, resulting in a large effort to implement in new API

Why Such Poor Predictions?

Image by fuzzyyol

https://www.flickr.com/photos/fuzzyyol/4884815233

• A setup that allows you to work with a broken API delivered
late.

• Or work on a quick prototype

• Not a library or a tool – rather, a set of best practices based
on our experience.

“Hack Stack" to the Rescue

Image by ejmc

https://www.flickr.com/photos/ejmc/4847838519

Hack Stack 101

Getting Started on the Hack Stack

• Allows you to start making assumptions.

• Can unearth problems that would later lead to delays.

• Apiary.io can be useful, but a Google Doc works fine.

Document the API

Image by joelogon

https://www.flickr.com/photos/joelogon/2123079156

• TDD: the first thing to try.

• Apiary.io etc: too limiting.

• A mock server: can work well, but expensive.

• Client-side mocking: our preferred solution.

Mocking the API

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

• We expect to eventually have a /tasks/ endpoint that would
give us REST access to tasks.

• We’ve agreed on what the returned JSON would look like.

• We’ve also agreed on how problems are going to be handled.

• Now we are waiting for the endpoint.

Scenario: The /tasks/ Endpoint

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

• Leave our “tasks” service out of it. But have it proxy all of API
calls through “api” proxy that will be in on the mocking.

• Put mock data into “tasksMocksData” service.

• Put mock logic into “tasksMocks” service. POSTs, PUTs, etc. can
modify data in memory.

• Refactor common logic into “mockEndpoint” service.

• The “api” service (or similar) will direct API requests to mock
services when appropriate.

Client-Side Mocking

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

The “Real” Service

.service('tasks', function(api) {
 var service = this;
 service.getTasks = function() {
 return api.get('/tasks/');
 };
});

The Data – Keep It Separate

.value('tasksMockData', {
 BASIC_TASK_LIST: [{
 "taskId": "114a8455-3ea6-4d15-9e17-4f51c0728f9b",
 "ownerId": "ece21bd8-c99f-49fc-a1f0-5bc9bfb86ab9",
 "description": "Make green eggs and ham.",
 "date": "2013-03-04T21:42:36 +04:00"
 }, {
 "taskId": "1e387178-c22b-11e4-8dfc-aa07a5b093db",
 "ownerId": "28a74904-c22b-11e4-8dfc-aa07a5b093db",
 "description": "Fix the roof.",
 "date": "2014-07-17T20:42:36 +04:00"
 }]
});

• http://www.json-generator.com/

• https://www.uuidgenerator.net/

• https://placekitten.com/

Generating the Data

Image by lincolnblues

https://www.uuidgenerator.net/
https://placekitten.com/
https://www.flickr.com/photos/joelogon/2123079156

Trivial Mock Logic

.service('tasksMocks', function(tasksMockData, $q) {
 var service = this;
 var taskList = tasksMockData.BASIC_TASK_LIST;
 service.getTasks = function() {
 return $q.when(taskList);
 };
});

� Make sure to return promises.

• Slow connection: mock with a timeout.

• Dropped connection.

• Server-side errors.

• Loss of authentication.

Mock Likely Problems

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

Mocking Latency

.service('tasksMocks', function(tasksMockData, mockEndpoint, $q) {
 var service = this;
 var taskList = tasksMockData.BASIC_TASK_LIST;
 service.getTasks = function() {
 return mockEndpoint.waitRandomTime(80, 300)
 .then(function() {
 return taskList;
 });
 };
});

� Control latency with a constant.

Mocking Dropped Calls

.service('tasksMocks', function(tasksMockData, mockEndpoint, $q) {
 var service = this;
 var taskList = tasksMockData.BASIC_TASK_LIST;
 service.getTasks = function() {
 return mockEndpoint.waitRandomTime(80, 300)
 .then(function() {
 return mockEndpoint.maybeDropConnection(0.50);
 });
 .then(function() {
 return taskList;
 });
 };
});

When the API Arrives

One day, the real API does arrive.

• Test it with Postman.

• Maybe test it with supertest.

Testing the API

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• Run the API server locally. (Easier with Vagrant!)

• Control your schedule.

• Settup a toggle between client-side mocks and the real
API.

Dealing with Changes

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• Mixing data from live API and mocks.

• Filtering API data through a mock layer.

• Using a proxy server: e.g. for CORS.

Working in the Hybrid Mode

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

Mixing Real and Mock Data

.service('tasksMocks', function(tasksMockData, mockEndpoint, $q,
 users) {

 var service = this;
 var taskList = tasksMockData.BASIC_TASK_LIST;
 service.getTasks = function() {
 angular.forEach(taskList, function(task, index) {
 task.ownerID = users[index % users.length].userId;
 });
 return $q.when(taskList);
 };
});

Proxying the Server

var express = require('express');
var request = require('request');
var app = express();
app.all('/api/(*)', function(req, res) {
 var url = 'https://api.example.com/v2/' + req.params[0];
 req.pipe(url).pipe(res);
});
app.listen(8080);

� Surely not for use in production.

• Mixing data from live API and mocks.

• Filtering API data through a mock layer.

• Using a proxy server: e.g. for CORS.

Working in the Hybrid Mode

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

rangle.io
The Web Inverted

Nick Van Weerdenburg

THANK YOU!

@n1cholasv

n1cholasv

Yuri Takhteyev

@qaramazov

yuri

CEO, rangle.io CTO, rangle.io

http://www.rangle.io

Image Credits

Images licensed through Creative Commons 2.0 Attribution license.

by torkildr by fuzzyyol by joelogon

by ejmc by lincolnblues

https://www.flickr.com/photos/tromal/6892743397
https://www.flickr.com/photos/fuzzyyol/4884815233
https://www.flickr.com/photos/joelogon/2123079156
https://www.flickr.com/photos/ejmc/4847838519
https://www.flickr.com/photos/joelogon/2123079156

