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Week 4

Converting an ER
Design Into a
Relational Form



Common Patterns

Hierarchical (1:M)
VS.
Not (Quite) Hierarchical (M:M)



A contains B

1:M
building < room
cd — track, book —< chapter
car — part
province — riding
neighborhood — restaurant
session — prediction
invoice — billable item



A contains B

M:M
course =— student
list < restaurant
dish ——= ingredient



A “owns” B

1:M
mother — child
user < comment
restaurant — rating
comment — rating
comment —= reply
customer < payment
customer —= Iinvoice
customer — session



A “owns” B

M:M
investor =— company
iInstructor »— course



Belonging to
Different Entities

1:M

user < comment >~ restaurant
customer — session > f. teller



B “instantiates” A

1:M
species — pet
model — vehicle
book — edition

course — course instance
("CCT395" vs "CCT395 in Fall 2011")

M:M
employee ~— role



Drawing Software

Options for software:

*|OpenOffice Draw

- Free / open source
- Available in the lab

-|You can get “"Crow’s Foot” templates at
http://www.thinktek.ca/articles/article2.php

- Alternatively, do UML notation (*n..m"”) by hand
* Microsoft Visio

 Your favorite software



Eatr

restaurant
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restaurant_id* neighborhood_id*
name >0O—}H- name

price_range

comment

comment_id*
date_posted
comment_text

list_membership

user

user_id*

list

H—o<
username 11
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Mapping ER to Rel.

Break up M:M entities

Each entities becomes a tables
(attributes become fields / columns)

What about the relationships?



Linking the Tables

species

T

utt

persona species_type

Jabba

Obiwan Kenobi | Human humanoid 2




Keys

A Candidate Key
a set of fields that can
uniquely identify a row in a table

The Primary Key (PK)
a candidate key that we decided
to use to identify rows in a
particular table



Examples of Keys

student
name? student id? Utorid
email? date of birth?

restaurant
name? city? Address?

comment
text? time? user?



Natural vs Surrogate

A "Natural” Key
based on an existing attribute
e.d.: email, existing codes
© easy to remember
® may have to change

A "Surrogate” Key T
; . c- sually
an arbitrary identifier |a better
® hard to remember  [option
© never have to change




Does Every Table
Need a PK?

Strictly speaking, no. But it often
helps, and almost never hurts.

So, as a rule of thumb:
add a surrogate PK to each table,
except those representing
associative entities.



Choosing PKs

restaurant:
restaurant_1d 1nteger

neighborhood:

nelghborhood_1d 1nteger

comment:
comment_1d 1nteger

user:
user_1d 1nteger



CREATE TABLE

create table restaurant (
restaurant_id integer,
name varchar (100),
price_range 1integer

) ;



NOT NULL

create table restaurant (
restaurant_id integer
not null,
name varchar (100) not null,
price_range 1integer

) ;



PRIMARY KEY

create table restaurant (
restaurant_id integer
not null,
name wvarchar (100) not null,
price_range 1integer,
primary key (restaurant_id)

) ;



AUTO_INCREMENT

create table restaurant (
restaurant_id integer
not null auto increment,
name wvarchar (100) not null,
price_range 1integer,
primary key (restaurant_id)

) ;



Foreign Key

A PK of another table
An attribute that contains a
primary key of another table,
with a constraint that the
corresponding row exists in
the other table. (A FK is always
itself a “key".)



Implementing 1:M

Every table representing an
entity on the "M” side of a
relationship gets a FK pointing
to the PK of the entity on the
1" side of that relationship.



Implementing 1:M

restaurant

restaurant_id*
name
price_range

neighborhood

neighborhood_id*
>O—H- name

comment

comment_id*
date_posted
comment_text

user

user_id*
username
real_name

list_membership

list

‘O< “St_id*
name




Implementing 1:M

restaurant

restaurant_id*
name
price_range
neighborhood_id

neighborhood

e

comment

comment_id*
date_posted
comment_text
restaurant_id
user_id
parent_id

—

user

user_id*
username
real_name

neighborhood_id*
name

list_membership

list_id

restaurant_id

list

‘O< “St_id*
name

user_id




Implementing a FK

create table restaurant (

restaurant_id integer
not null auto_ increment,
name varchar (100) not null,
price_range 1integer,
neighborhood id integer,
primary key (restaurant_id),
foreign key (neighborhood_id)
references
neighborhood (neighborhood id)

) ;



ON DELETE

create table restaurant (
restaurant_id integer

neighborhood_id integer,
primary key (restaurant_id),
foreign key (neighborhood_id)
references

neighborhood (neighborhood id)
on delete cascade

) ;
III \\
4

alternatives: “set nul restrict”.



Associative Entities

create table list_membership (
list_i1d integer not null,
restaurant_id integer not null,
primary key
(List _i1d, restaurant_ id),
foreign key (list_id)
references list (list id),
foreign key (restaurant_id)
references
restaurant (restaurant id),

) ;



Recursion

create table comment (
comment_id integer not null,

parent_id integer,
primary key (comment_id),

foreign key (parent_id)
references comment (comment id)

) ;



Questions?



Optional / Mandatory

On the 1 side:
Use “not null” on the FK.

On the M side:
Can’t be mandatory. (It will
have to be optional.)



1:1 Relationships

Option 1:
Use the same table.

Option 2:
Use a single-attribute FK
as the PK in one of the tables.



Multivalued Attributes

customer:
name
phone number(s)
email addresse(s)

restaurant:
name
address

tag(s)



Multivalued Attributes

Problem:
Multivalued attributes may be
ok in ER, but definitely not in
a relational database.

Solution:
Treat multivalued attributes as
simple entities.



customer customer_email

name O< email

A

customer_tel Why are those
phone_number 1M and not
M:M?




customer

customer_id (PK)
name

customer_email

A

customer_tel

phone_number
customer_id (FK)

email
customer_id (FK)




create table customer email (
email wvarchar (100),
customer_1id integer not null,
primary key
(customer id, email),
foreign key (customer_id)
references customer (list id)
) ;
Are we missing anything?



create table customer email (
email wvarchar (100),
customer_1id integer not null,
position i1integer,
primary key
(customer id, email),
foreign key (customer_id)
references customer (list id)

) ;



ER for M
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