CCT396, Fall 2011

Database Design and
Implementation

Yuri Takhteyev

University of Toronto

http://creativecommons.org/licenses/by/3.0/. This presentation incorporates images from the Crystal Clear icon collection by Everaldo

@ @ This presentation is licensed under Creative Commons Attribution License, v. 3.0. To view a copy of this license, visit
- Coelho, available under LGPL from http://everaldo.com/crystal/.

Week 4

Converting an ER
Design Into a
Relational Form

Common Patterns

Hierarchical (1:M)
VS.
Not (Quite) Hierarchical (M:M)

A contains B

1:M
building < room
cd — track, book —< chapter
car — part
province — riding
neighborhood — restaurant
session — prediction
invoice — billable item

A contains B

M:M
course =— student
list < restaurant
dish ——= ingredient

A “owns” B

1:M
mother — child
user < comment
restaurant — rating
comment — rating
comment —= reply
customer < payment
customer —= Iinvoice
customer — session

A “owns” B

M:M
investor =— company
iInstructor »— course

Belonging to
Different Entities

1:M

user < comment >~ restaurant
customer — session > f. teller

B “instantiates” A

1:M
species — pet
model — vehicle
book — edition

course — course instance
("CCT395" vs "CCT395 in Fall 2011")

M:M
employee ~— role

Drawing Software

Options for software:

*|OpenOffice Draw

- Free / open source
- Available in the lab

-|You can get “"Crow’s Foot” templates at
http://www.thinktek.ca/articles/article2.php

- Alternatively, do UML notation (*n..m"”) by hand
* Microsoft Visio

 Your favorite software

Eatr

restaurant

neighborhood

restaurant_id* neighborhood_id*
name >0O—}H- name

price_range

comment

comment_id*
date_posted
comment_text

list_membership

user

user_id*

list

H—o<
username 11

real_name

list_id*
name

Mapping ER to Rel.

Break up M:M entities

Each entities becomes a tables
(attributes become fields / columns)

What about the relationships?

Linking the Tables

species

T

utt

persona species_type

Jabba

Obiwan Kenobi | Human humanoid 2

Keys

A Candidate Key
a set of fields that can
uniquely identify a row in a table

The Primary Key (PK)
a candidate key that we decided
to use to identify rows in a
particular table

Examples of Keys

student
name? student id? Utorid
email? date of birth?

restaurant
name? city? Address?

comment
text? time? user?

Natural vs Surrogate

A "Natural” Key
based on an existing attribute
e.d.: email, existing codes
© easy to remember
® may have to change

A "Surrogate” Key T
; . c- sually
an arbitrary identifier |a better
® hard to remember [option
© never have to change

Does Every Table
Need a PK?

Strictly speaking, no. But it often
helps, and almost never hurts.

So, as a rule of thumb:
add a surrogate PK to each table,
except those representing
associative entities.

Choosing PKs

restaurant:
restaurant_1d 1nteger

neighborhood:

nelghborhood_1d 1nteger

comment:
comment_1d 1nteger

user:
user_1d 1nteger

CREATE TABLE

create table restaurant (
restaurant_id integer,
name varchar (100),
price_range 1integer

) ;

NOT NULL

create table restaurant (
restaurant_id integer
not null,
name varchar (100) not null,
price_range 1integer

) ;

PRIMARY KEY

create table restaurant (
restaurant_id integer
not null,
name wvarchar (100) not null,
price_range 1integer,
primary key (restaurant_id)

) ;

AUTO_INCREMENT

create table restaurant (
restaurant_id integer
not null auto increment,
name wvarchar (100) not null,
price_range 1integer,
primary key (restaurant_id)

) ;

Foreign Key

A PK of another table
An attribute that contains a
primary key of another table,
with a constraint that the
corresponding row exists in
the other table. (A FK is always
itself a “key".)

Implementing 1:M

Every table representing an
entity on the "M” side of a
relationship gets a FK pointing
to the PK of the entity on the
1" side of that relationship.

Implementing 1:M

restaurant

restaurant_id*
name
price_range

neighborhood

neighborhood_id*
>O—H- name

comment

comment_id*
date_posted
comment_text

user

user_id*
username
real_name

list_membership

list

‘O< “St_id*
name

Implementing 1:M

restaurant

restaurant_id*
name
price_range
neighborhood_id

neighborhood

e

comment

comment_id*
date_posted
comment_text
restaurant_id
user_id
parent_id

—

user

user_id*
username
real_name

neighborhood_id*
name

list_membership

list_id

restaurant_id

list

‘O< “St_id*
name

user_id

Implementing a FK

create table restaurant (

restaurant_id integer
not null auto_ increment,
name varchar (100) not null,
price_range 1integer,
neighborhood id integer,
primary key (restaurant_id),
foreign key (neighborhood_id)
references
neighborhood (neighborhood id)

) ;

ON DELETE

create table restaurant (
restaurant_id integer

neighborhood_id integer,
primary key (restaurant_id),
foreign key (neighborhood_id)
references

neighborhood (neighborhood id)
on delete cascade

) ;
III \\
4

alternatives: “set nul restrict”.

Associative Entities

create table list_membership (
list_i1d integer not null,
restaurant_id integer not null,
primary key
(List _i1d, restaurant_ id),
foreign key (list_id)
references list (list id),
foreign key (restaurant_id)
references
restaurant (restaurant id),

) ;

Recursion

create table comment (
comment_id integer not null,

parent_id integer,
primary key (comment_id),

foreign key (parent_id)
references comment (comment id)

) ;

Questions?

Optional / Mandatory

On the 1 side:
Use “not null” on the FK.

On the M side:
Can’t be mandatory. (It will
have to be optional.)

1:1 Relationships

Option 1:
Use the same table.

Option 2:
Use a single-attribute FK
as the PK in one of the tables.

Multivalued Attributes

customer:
name
phone number(s)
email addresse(s)

restaurant:
name
address

tag(s)

Multivalued Attributes

Problem:
Multivalued attributes may be
ok in ER, but definitely not in
a relational database.

Solution:
Treat multivalued attributes as
simple entities.

customer customer_email

name O< email

A

customer_tel Why are those
phone_number 1M and not
M:M?

customer

customer_id (PK)
name

customer_email

A

customer_tel

phone_number
customer_id (FK)

email
customer_id (FK)

create table customer email (
email wvarchar (100),
customer_1id integer not null,
primary key
(customer id, email),
foreign key (customer_id)
references customer (list id)
) ;
Are we missing anything?

create table customer email (
email wvarchar (100),
customer_1id integer not null,
position i1integer,
primary key
(customer id, email),
foreign key (customer_id)
references customer (list id)

) ;

ER for M

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

