
Solutions to in-class exercise #1

Question 2

Here is how we can go about answering question #2, step-by-step.

“What courses meet in room CC2130 during session 20109?”

Step 0. Translate the questions into the terms used by our database.

Find course codes for all courses that meet in room with room code “CC2130” during the session with
session code “20109”.

Step 1. Figure out which columns in which tables have the information we need for the actual
answer.

In case of question 2, we want course codes. This is available in the column course_code in the table
course. So, our query will start with

select course.course_code

Step 2. Figure out how to express the conditions imposed in the question.

In this case, we want courses for which the room_code is “CC2130” and session_code is “20109”.
Those columns are in tables room and session. So, we can now write the end of our query too:

select course.course_code
...
where room.room_code="CC2130"
 and session.session_code="CC2130";

Note that we are using and because we want only rows that satisfy both of those conditions.

We will fill in the middle part of the query (“...”) in the next step.

Step 3. Figure out what tables we need and how we can join them.

In our case, we know that we would at least need tables course, room, and session, because the first
of those has the column we need in the end and the other two have columns that we use in the where
clause. If we can join those three tables directly, perhaps this all we need. But it is possible that those
three tables cannot be joined to each other. If so, we will need to use some other tables also.

Can we join course and room? Not really – there is no information that would allow us to join them.
The rows in room are identified by room_id, but the course table does not have room_id. The courses
are identified by course_id, but there is no course_id in room. It turns out that we have the same
problem if we try to join session to room, or course to session.

So, what do we do?

It turns out that we have another table in the database: course_instance. This table represents a
specific offering of a course. The reason we have this table is because a course like “CCT395H” is
offered in different sessions (semesters). Every time it is offered, it may meet in different room. So, we
do not want to record a single room number for “CCT395H” in general. We need to have a separate
table for recording information that is specific to a particular offering of the course. This is our
course_instance table. Each row in this table represents a particular course offered in a particular
session, showing also the room where the course meets during this session.

We can join course_instance to room using room_id. After that, we can join the resulting table to
course using course_id. Then we join the resulting table to session. Every time we do a join, we get
more columns:

SQL columns we get after this chunk of SQL comment

from course_instance course_instance.instance_id
course_instance.course_id
course_instance.session_id
course_instance.room_id
course_instance.final_exam

Those are just the columns of
course_instance.

join room
 on course_instance.room_id
 = room.room_id

course_instance.instance_id
course_instance.course_id
course_instance.session_id
course_instance.room_id
course_instance.final_exam
room.room_id
room.room_code
room.capacity
room.projector

Now we have all the columns of
course_instance and all the columns
of room. The columns shown in bold
are the ones we are joining on. (That is,
we will throw away all rows for which
course_instance.room_id and
room.room_id have different values.)

join course
 on course_instance.course_id
 = course.course_id

course_instance.instance_id
course_instance.course_id
course_instance.session_id
course_instance.room_id
course_instance.final_exam
room.room_id
room.room_code
room.capacity
room.projector
course.course_id
course.course_code
course.course_name
course.course_type

Now we have all the columns we got
from the previous join plus all the
columns from the course table. Note
that in this step we are not joining room
to course, but rather to the result of the
previous join.

join session
 on course_instance.session_id
 = session.session_id

course_instance.instance_id
course_instance.course_id
course_instance.session_id
course_instance.room_id
course_instance.final_exam
room.room_id
room.room_code
room.capacity
room.projector
course.course_id
course.course_code
course.course_name
course.course_type
session.session_id
session.session_code
session.start_date
session.end_date

Notice that the table course that we
used above (in join course) does not
have the field session_id. However,
we are not joining session to course.
Rather, we are joining session to the
result of the previous joins, which does
have a column session_id (or, more
precisely, course_instance.
session_id).

The result of this last join is a table with 18 columns. It should have the same number of rows as our
original course_instance table, each row representing an offering of a course in a particular session.
This larger table, however, has columns not available in the original course_instance table. In
particular, it has the two columns we need to do our selection: room.room_id and

session.session_id.

So, the database can now do the selection (i.e., apply the where clause), which will give us a table with
18 columns still, but with only those rows that represent course offered in the 20109 session that meet
in room CC2130.

However, we are not interested in all the 18 columns. We are only interested in course codes. We
achieve this with the course.course_code in the beginning of the query, right after select. Notice
that we need to put list the columns we want in the beginning of the query, but this picking of specific
columns (“projection”) is really the last thing that the database will do.

So, our final query will look like this:

select course.course_code this is what we want (this is applied last)

from course_instance the first table to use

join room

 on course_instance.room_id=room.room_id

 join it to another one

join course

 on course_instance.course_id=course.course_id

 join the result to the third table

join session

 on course_instance.session_id=session.session_id

 join the results to the forth

where now pick the rows we want

 room.room_code="CC2130" first, just those that have the right room code

 and session.session_code="20109" and from among those, the ones that have the
 right session code

; a semi-column to show that we are done

Of course, since whitespace does not matter in SQL, we could write this query this way too:

select course.course_code from course_instance join room on
course_instance.room_id=room.room_id join course on
course_instance.course_id=course.course_id join session on
course_instance.session_id=session.session_id where room.room_code="CC2130" and
session.session_code="20109";

(It would be much harder to understand, though.)

Question 3

For question 3, we want select rows based on building_code, so we need to add the building table.
We no longer have any columns from room in the where clause, but it turns out that we still need the
room table, because there is no way of joining building to course_instance directly. So, to list the

codes of courses that meet in CCT in this session, we would do this:

select course.course_code
from course_instance
 join room on course_instance.room_id=room.room_id
 join course on course_instance.course_id=course.course_id
 join session on course_instance.session_id=session.session_id
 join building on room.building_id = building.building_id
where
 building.building_code="CCT"
 and session.session_code="20109";

However, the question asks us how many of such courses there are. So:

select count(course.course_code)
from course_instance
 join room on course_instance.room_id=room.room_id
 join course on course_instance.course_id=course.course_id
 join session on course_instance.session_id=session.session_id
 join building on room.building_id = building.building_id
where
 building.building_code="CCT"
 and session.session_code="20109";

Question 4

This question asks us what is the “maximum enrollment”. However, we do not have a field called
“enrollment”. The reason for this is that there is no need to store this number – “enrollment” is the
number of students currently registered for a course. So, let’s rephrase the question:

For courses meeting in room with room code “CC2130” during the session with session code
“20109”, if we count the students enrolled in each course, what’s the maximum count?

Now we can proceed to figuring out the beginning and end of the query:

select count(student.student_id)
...
where room.room_code="CC2130" and session.session_code="20109"
group by course_instance.course_id
order by count(student.student_id) desc limit 1;

(The end of this query is a bit more complicated, since we want to group, count, order and limit, but
this is all last week’s material.)

Now, what goes in the middle? We will need at least the following tables it looks like: student, room,
session, course_instance. For joining room, session, and course_instance we can just copy and
paste a chunk of our answer to question 2:

select count(student.student_id)
from course_instance
 join room on course_instance.room_id=room.room_id

 join session on course_instance.session_id=session.session_id
...
where room.room_code="CC2130" and session.session_code="20109"
group by course_instance.course_id
order by count(student.student_id) desc limit 1;

However, we also need the student table. This table cannot be joined directly to any of the tables we
have joined already. (You should try to figure out why.) However, we also have another table:
enrollment. This table creates an association with a student and a course instance. So, we can join
enrollment to our collection of joined tables, and then join student to that.

select count(student.student_id)
from course_instance
 join room on course_instance.room_id=room.room_id
 join session on course_instance.session_id=session.session_id
 join enrollment on course_instance.instance_id=enrollment.instance_id
 join student on enrollment.student_id=student.student_id
where room.room_code="CC2130" and session.session_code="20109"
group by course_instance.course_id
order by count(student.student_id) desc limit 1;

If we want, we can simplify this somewhat by using using instead of the more explicit join on:

select count(student.student_id)
from course_instance
 join room using (room_id)
 join session using (session_id)
 join enrollment using (instance_id)
 join student using (student_id)
where room.room_code="CC2130" and session.session_code="20109"
group by course_instance.course_id
order by count(student.student_id) desc limit 1;

Question 5
Similar to question 4 but simpler, actually.

Question 6

To answer this question we would need to build on our query for question 4. We would join all seven
tables, set a condition that session code is “20109”, group the rows by course instance ID and room
capacity, then compare the counts to the value of room capacity. It would look something like this:

select room.room_code
from course_instance
 join room using (room_id)
 join session using (session_id)
 join enrollment using (instance_id)
 join student using (student_id)
where session.session_code="20109"
group by course_instance.course_id, room.capacity
having count(student.student_id) > room.capacity;

	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

