## CCT395, Week 10

## **Database Security**

Catalin Bidian University of Toronto November 10, 2010

November 10, 2010

CCT395F

### **Database Security – Main Objectives**

#### 1. Confidentiality (aka Secrecy):

- a. Data must be kept private
- b. Information should NOT be disclosed to unauthorized users
- **2. Integrity:** data are accurate protected from unauthorized modification and/or destruction

#### 3. Availability:

- a. Data are accessible when needed
- b. Authorized users are not denied access
- c. Protecting the network from events that would render data unavailable (including power outages)

### **To Achieve the Main Objectives**

#### 1. Security policies (the 3-C's):

- a. Must be clear
- b. Must be <u>consistent</u>
- c. Must be <u>concise</u>

#### 2. Security mechanisms:

- a. Internal (e.g. Operating System, DBMS, firewalls, etc)
- b. External (e.g. restrict physical access, outside-thenetwork attacks, social engineering attacks, etc.)

### **Sources of Threats**

#### 1. Internal (aka insiders):

a. Employee attacks (deliberate or accidental)

b. Accidents and security oversights

#### 2. External:

- a. Physical attacks
- b. Software attacks

### Who are Insiders?

An *insider* is any entity that has <u>authorized</u> access to the organization's network and data/information resources

#### 1. Employees:

- a. Full/Part-time employees and their families
- b. Former employees
- c. Contractors, co-op students

#### 2. Network users:

- a. Partners (recent mergers and acquisitions)
- b. Clients, customers

### Who are Insiders? (cont'd)

- **3. IT product/service suppliers** software development, hardware maintenance, remote support
- **4.** Automated systems and processes (e.g. CIBC faxes to US Allstar and Wade Peer, Quebec and who knows where else... (2) <u>http://www.priv.gc.ca/incidents/2005/050418\_02\_e.cfm</u> and <u>http://www.theglobeandmail.com/report-on-business/article959327.ece</u>

### The Insider Advantage

- Knowledge of asset value
- Access to assets
- Knowledge of business operations and procedures
- Knowledge of protective controls <u>and how to bypass</u> <u>them</u>
- Knowledge of corporate culture
- Trusted by management and "dog watchers"

### What do Insiders Do?

- Information leakage (knowingly or not)
- Inappropriate activity
  - Inappropriate use of corporate resources
  - Access to internal information
- Malicious activity
  - Inappropriate or illegal access to accounts/resources
  - Fraud and/or identity theft
  - Sabotage

### **Information Leakage**

- Job postings
- Newsgroups and blogs
- Social networking sites
- Instant messaging services
- Newspapers
- Legal investigations and court trials

### An Insider's Profile

- Sense of entitlement ("I've been here 20 years and you wouldn't dare restrict my access" or "I work 17 hours a day and never got a bonus")
  - Any challenge on "entitlement" leads to more resistance and frustration → prerequisite for revenge!
- Frequently frustrated in the workplace (may also be personally and/or socially frustrated)
- May possess strong computer skills (or think they do  $\odot$  )
- Tend to plan their revenge (watch out for the early signs)
- Financial gain is emerging as a significant motivating factor

### The Insider's MO

#### 1. Employee attacks:

- a. Hacking techniques
- b. Take advantage of legitimate access
- c. Break into computer rooms
- d. Social engineering

#### 2. Accidents and security oversights:

- a. Victims of social engineering
- b. Accidents causing physical damage
- c. Misuse of system(s)
- d. Installing personal hardware/software on the network

## Lessons Learned from Internal Attacks\*

- Negative impact on corporate finances
- Negative impact on corporate reputation
- Internal threats <u>ARE</u> a corporate problem
  - Sometimes corporations refuse to acknowledge this... ☺
- Internal threats cannot be solved by technology alone
- Growing lack of reporting and information sharing

#### **External Threats**

#### 1. Physical attacks:

- a. Physical access to computer rooms
- b. Leaving Admin accounts logged-in

#### 2. Software attacks:

- a. White-hat hackers
- b. Black-hat hackers
- c. Script kiddies
- d. Cyber-terrorists

*Cyberterrorists*: Cyberterrorists are hackers who are motivated by a political, religious, or philosophical agenda. They may propagate their beliefs by defacing Web sites that support opposing positions. (p. 326)

### **Types of External Attacks**

- 1. (Distributed) Denial of Service (D/DoS):
  - Easy to detect **\*\***; difficult to defend against
  - Can be in fact both internal and external
  - First incidents 2001 Register.com, Dept. of Finance
  - 2002 and 2007 attempts to bring down the Internet (DDoS attack against the DNS Backbone)
  - Facebook, Twitter, Livejournal, Amazon, Google, etc, etc, etc...
  - Prevention Tools:
    - Firewalls  $\rightarrow$  not very efficient on port 80 (Internet) for DDoS
    - Switches and routers (ACL capability) to limit and shape traffic
    - Intelligent hardware bandwidth management, deep packet inspection
    - Intrusion Prevention Systems (IPS)

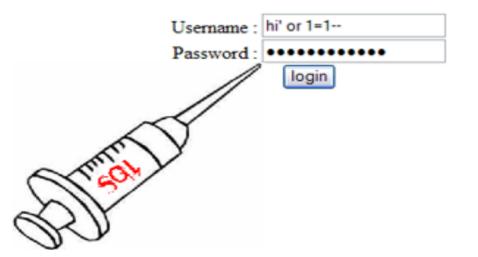
### **Types of External Attacks (cont'd)**

#### 2. Buffer Overflow:

- Almost impossible to detect by network/software engineers
- Hackers can insert their own code into a program and take control of the system \*\*
- Variations: stack-based and heap-based
- Attacks are not very common 2001 "Code Red" worm (MS IIS), 2003 Xbox exploit and "SQL Slammer"

#### Prevention Tools:

- NOP slide (no-operation instructions)
- "Jump to Address" technique
- Choice of programming language (C/C++ not a very good choice if used without the C++ libraries)


### Types of External Attacks (cont'd)

Web customers cannot issue ad hoc queries using a query language; they can only use the browser-based application provided for them. Therefore, there is little that the typical Web user can do to compromise the security of the database.

#### 3. SQL Injections:

- Exploit openings in SQL statements to insert and execute code, altering the database and taking control of the system \*\*
- Variations:
  - Incorrectly filtered escape characters (application layer)

-: Administrator Login :-



- 3. SQL Injection Variations:
  - Incorrectly filtered escape characters (application layer)
  - SELECT authorization\_level FROM Users WHERE user\_name = '\$email';

Normal user input: <u>catalin.bidian@utoronto.ca</u> → SELECT authorization\_level FROM Users WHERE user\_name = 'catalin.bidian@utoronto.ca' → Auth Level: Admin

SQL Injection attack: <u>test@test.com</u>' OR '1' = '1 → SELECT authorization\_level FROM Users WHERE (user\_name = 'test@test.com' <u>OR</u> '1' = '1' → Auth Level : ???? (LIST ALL)

- 3. SQL Injection Variations:
  - Incorrect type handling (application layer)
     SELECT \* FROM Users WHERE user id = "" + \$variable + ";

Normal user input: catalin → SELECT \* FROM Users WHERE user\_id

= 'catalin'

#### SQL Injection attack:

- a) test'; DROP TABLE Users → SELECT \* FROM Users WHERE user\_id = 'test'; DROP TABLE Users
- b) test'; INSERT INTO Users (user\_id, password, auth\_level) VALUES ('catalin', 'cct395', 'Admin') → SELECT \* FROM Users WHERE user\_id = 'test'; INSERT INTO....
- c) test'; UPDATE Users SET authorization\_level = 'Admin' WHERE user\_id = 'catalin

November 10, 2010

CCT395F

- 3. SQL Injection Variations:
  - Brute force attacks (application layer)

SELECT \* FROM Users WHERE user\_name = '\$email' AND password = '\$user\_password';

#### SQL Injection attack:

- The attacker tries countless values for user\_password until he/she succeeds
- Assumes knowing at least one user name
- Time consuming
- Not generally feasible

- 3. SQL Injection Variations:
  - Blind SQL injection
    - Conditional responses
    - Conditional errors
    - Time delays
  - Schema field mapping (sequential queries)
    - WHERE *field* = 'x' AND user\_email IS NULL;
    - WHERE user\_email = 'x' AND user\_id IS NULL;
  - Routine data base design (e.g. *user\_id*)
  - Exploiting vulnerabilities in SQL/mySQL server

#### Mitigation Tools:

- Cleanup the user input
  - Limit input boxes to a certain number of characters
  - Validate input programmatically (e.g. phone numbers, SIN, etc) some numbers have check digit logic embedded
  - Quote-safe the input (e.g. John O'Connell)
- Use bound parameters
  - myQuery = "SELECT \*...WHERE user\_id = \$email;"
  - Sth→execute(\$email);
- Use xp\_cmdshell, xp\_startmail, xp\_sendmail, sp\_makewebtask
- Limit permissions on the database
- Use stored procedures
- Hide URL address in web-browser
- Configure error reporting, monitor logs, trigger alerts, etc

CCT395F

### **Some Examples**

#### Monkeys with mood "<?php echo **\$\_GET**["mood"]; ?>":

http://.../monkeys\_3.php?mood=H

A http://.../monkeys\_3.php?mood=A

### Some Examples (cont'd)

#### Using mysql\_real\_escape\_string

Not very good:

\$owner = \$\_GET['owner'];

\$query = "select name, species from pet where owner='" . \$owner . "'";

#### Better:

\$owner = mysql\_real\_escape\_string(\$\_GET['owner']); \$query = "select name, species from pet where owner='" . \$owner . "'";

### Some Examples (cont'd)

Using *mysql\_real\_escape\_string* 

However:

\$result = "SELECT salary FROM Employees WHERE id = "
.mysql\_real\_escape\_string(\$\_POST['id']);

if \$\_POST['id'] is injected with *45005 OR 1=1* then the resulting query becomes:

SELECT salary FROM Employees WHERE id = 45005 OR 1=1

### Some Examples (cont'd)

#### Using mysql\_real\_escape\_string

Another one:

\$result=mysql\_query('SELECT \* FROM users WHERE
username="".\$\_GET['username'].'"');

\$result=mysql\_query('SELECT \* FROM users WHERE
username="'.mysql\_real\_escape\_string(\$\_GET['username']).'"');

This way, if the user tried to inject another statement such as a DELETE, it would harmlessly be interpreted as part of the WHERE clause parameter

SELECT \* FROM users WHERE username = '\';DELETE FROM comments WHERE title != \''

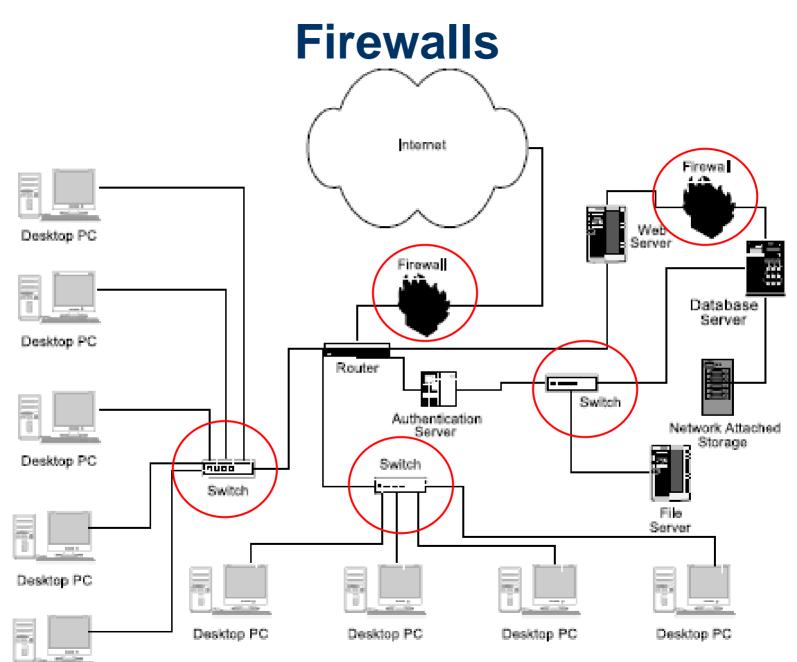
## **Types of External Attacks (cont'd)**

#### 4. Malware:

- Malicious software (viruses, trojans, spyware, worms, adware, etc) used by attackers to gain control over the system
- John von Newmann's postulate: a machine (aka program) can reproduce itself → nanotechnology

#### • Mitigating Tools:

- Anti-virus and anti-spyware programs
- Firewalls
- Log and file monitoring software
- Intrusion prevention systems
- Patch management → difficult to maintain and decide which to install


See more at <u>http://www.us-cert.gov/reading\_room/malware-threats-</u> <u>mitigation.pdf</u>

November 10, 2010

CCT395F

## Types of External Attacks (cont'd)

- 5. Brute Force Attacks:
  - Stems from cryptography
  - Continuously run programs that try to break into the system
    - List of email addresses, passwords, phone numbers, etc aka Dictionary Attacks
  - <u>Mitigating Tools:</u>
    - Anti-virus and anti-spyware programs
    - Firewalls
    - Log and file monitoring software
    - Intrusion prevention systems



Desktop PC

No

### Firewalls (cont'd)

FortGuard Firewall V2.2 Build 90212, Advanced (Registered)

**FortGuard Firewall** 

#### \_ 🗆 🗙

(C)2003-2009 FortGuard Software Ltd.

http://www.fortguard.com

|                    | ntruder Addr    | Time              | Information                      |
|--------------------|-----------------|-------------------|----------------------------------|
| Monitors           | 8.221.224.150:  | 10/29/08-17:50:17 | http_decode: overlong character  |
|                    | 22.73.95.17:54  | 10/29/08-17:47:39 | spp_stream4: Evasive retransmiti |
| Ports to Block     | :22.59.142.136: | 10/29/08-16:50:24 | spp_stream4: Evasive retransmiti |
|                    | 22.59.142.136:  | 10/29/08-16:50:24 | spp_stream4: Evasive retransmiti |
| IP Filters         | 21.227.171.207  | 10/29/08-16:48:37 | http_decode: overlong character  |
|                    | 21.227.171.207  | 10/29/08-16:48:37 | SQL Injection attempt            |
| TCP Flow Control   | :11.139.116.198 | 10/29/08-16:46:17 | http_decode: missing uri         |
|                    | 11.139.116.198  | 10/29/08-16:46:16 | http_decode: missing uri         |
|                    | 11.139.116.198  | 10/29/08-16:46:16 | spp_stream4: NMAP Fingerprint S  |
| Intrusions         | 8.211.47.118:3  | 10/29/08-16:45:22 | http_decode: overlong character  |
| Logs Anti-ArpSpoof | :18.91.109.120: | 10/27/08-20:41:32 | http_decode: overlong character  |
|                    | 21.226.40.3:27  | 10/27/08-20:38:58 | http_decode: overlong character  |
|                    | 21.234.85.214:  | 10/27/08-20:34:00 | spp_stream4: Evasive retransmiti |
|                    | 21.234.85.214:  | 10/27/08-20:34:00 | spp_stream4: Evasive retransmiti |
|                    | 11.139.116.166  | 10/27/08-20:32:24 | spp_stream4: NMAP Fingerprint S  |
|                    | 11.139.116.166  | 10/27/08-20:32:24 | http_decode: missing uri         |
|                    | 17.88.142.82:1  | 10/27/08-18:14:41 | http_decode: overlong character  |
| . <u>Register</u>  | 1               |                   |                                  |

## Types of External Attacks (cont'd)

- 6. Social Engineering:
  - It is in fact both internal and external type of attack based on psychological manipulation
  - Kevin Mitnick security consultant and convicted criminal
  - MO's:
    - Pretexting (including an induced sense of crisis)
    - Diversion
    - Phishing (which includes over-the-phone or IVR)
    - Baiting
    - Quid pro quo
    - Confidence tricks
    - Eavesdropping, shoulder surfing, intimidation,

November 10, 2010

CCT395F

## Social Engineering (cont'd)

#### Mitigating Tools:

Require employees to take two consecutive weeks of vacation at least once every two years. If an employee is hacking the organiza-

- No technology can fully mitigate SE attacks
- Employee education and raising awareness
- Develop and enforce policies and procedures \*\*
  - Change management
  - Password policies DO STRONG PASSWORDS INCREASE SECURITY? (Password management survey http://www.roboform.com/enterprise/whitepapers/RoboForm\_Ent erprise-Password\_Management\_Survey.pdf)
  - Information classification and access
- Top-down corporate security culture
- Building a human firewall
- Use it as a technique to perform security audits

CCT395F

### **General Mitigation Techniques**

- Securing the perimeter security cameras, smart locks, removal of explicit signs
- Restrict physical access
  - One-way traffic
  - Access key-cards
  - Environmental design
- Firewalls
  - Stateful packet inspection
  - Circuit-level gateways (CLGs)
  - Application proxies (aka application-level gateways ALGs)
  - Personal firewalls

## General Mitigation Techniques (cont'd)\*

- Virtual Private Networks (VPNs)
- Subverting authentication
- Implement and enforce access controls (e.g. Bell LaPadula no read-up / no write-down)
- Limit disk usage
- Enhanced user authentication
  - What you know
  - What you have
  - What you are
- Database authorization matrices (access control)

### **Database Authorization**

- DBMS offers two main approaches to access control:
  - Discretionary access control (DAC)
  - Mandatory access control (MAC)
- SQL supports DAC through GRANT and REVOKE
  - GRANT privileges [ON table] TO user
    - GRANT CONNECT TO john
    - GRANT INSERT, DELETE ON Payroll TO john
    - Additional clause WITH GRANT OPTION
      - GRANT UPDATE ON Payroll TO john WITH GRANT OPTION

### **Discretionary Access Control (cont'd)**

- Granularity in GRANT specify the table fields
  - GRANT UPDATE (phone\_num, address) ON Employees TO john
     WITH GRANT OPTION
  - GRANT SELECT (name, phone\_number) ON Employees TO PUBLIC
- Revoking privileges is done through REVOKE
  - REVOKE [GRANT OPTION FOR] *privileges* ON *table* FROM *users* [RESTRICT | CASCADE]
    - REVOKE UPDATE (phone\_num, address) ON Employees
       FROM john CASCADE

### **Discretionary Access Control (cont'd)**

- DACs have weaknesses
  - Susceptible to Trojan attacks example:
    - Attacker has no rights to the table containing sensitive information (e.g. Payroll)
    - Attacker creates new table in the database (e.g. MyTable)
    - Attacker provides INSERT privileges to victim ON MyTable
    - Attacker modifies the application (i.e. website) so that when victim executes a SELECT FROM Payroll, the results get automatically inserted into MyTable

#### DACs must be combined with MACs for good results

## **Mandatory Access Control**

- Most popular model is Bell LaPadula
  - Simple Security Property no read-up
  - \*-Property (aka "star-property") no write-down
  - Discretionary Security Property use of access matrix
- Multi-level Relations and Polyinstantiation
  - Security class assigned to each table (or even each row) → the concept of <u>multi-level table</u>

| User ID | User Name | e-Mail             | Security Class |
|---------|-----------|--------------------|----------------|
| 101     | John      | john@cct395.org    | А              |
| 102     | Mary      | mary@cct395.org    | J              |
| 103     | Catalin   | catalin@cct395.org | Ν              |

• Someone with "J" wants to INSERT a row... (see next slide)

## Mandatory Access Control (cont'd)\*

• Someone with "J" wants to INSERT a row

| User ID | User Name | e-Mail                 | Security Class |
|---------|-----------|------------------------|----------------|
| 101     | John      | john@cct395.org        | А              |
| 101     | Yuri      | <u>yuri@cct395.org</u> | J              |
| 102     | Mary      | mary@cct395.org        | J              |
| 103     | Catalin   | catalin@cct395.org     | Ν              |

- If the insertion is allowed  $\rightarrow$  two "101" User IDs
- If the insertion is not allowed (i.e. violation of Primary Key) then we can infer that the Security Class is <u>higher</u> than "J"
  - "J" becomes "A"
- <u>Solution</u>: include the Security Class in the Primary Key definition

## Mandatory Access Control (cont'd)\*

- Covert Channels (DOD Security Levels)
  - Two sites with different security classes
    - A = most secure class
    - D = least secure class
  - Both sites have to agree before a transaction is committed
  - Attack:
    - Site D agrees to commit (because of its lower class)
    - Site A agrees <u>only if</u> it transmits 1 bit
    - The attacker will send information from A to D <u>repeatedly</u> in 1-bit packets → tedious but it works!
      - Violation of Bell-LaPadula (no-write down)
  - <u>Solution</u>: most DBMSs have already implemented controls

## **Other Methods**

• Who has access to what

Some organizations have solved this problem by appointing a committee to handle the decisions about who has access to what. Users

- So... what's the problem?
- Establish ROLES
  - CREATE ROLE interns;
  - GRANT interns TO john, catalin;
  - GRANT SELECT, UPDATE (phone\_number) ON Employees TO interns;
  - REVOKE interns FROM catalin;
  - DROP ROLE interns;
- Use encryption, SSL, digital signatures, etc

## **Backup & Disaster Recovery**

- Backup is part of a good security strategy
  - Ensure the backup is "clean"
  - Ensure there are enough copies and versions
  - Consider "<u>how much</u>" you can afford:
    - To spend on backups
    - To loose should a disaster happen
  - Psychological and technical components
- Disaster recovery
  - Always have a disaster recovery plan
    - Where the backups are kept

For small organizations, it's not unheard of for an IT staff member to take backups home for safekeeping, November 10, 2010 CCT395F

## **Disaster Recovery (cont'd)**

- Always have a disaster recovery plan
  - Purchase new hardware, O/S, software?
  - How will the data be restored
  - Determine who/what is affected/impacted and to what degree
  - Establish priorities for recovery (immediate, 1-day, 1-week, etc)
  - Test and refine the plan (simulate a disaster)
- Conduct Business Impact Assessments (BIAs)
- Conduct periodical vulnerability assessments
- Implement disaster avoidance and prevention procedures
  - Detective measures
  - Preventive measures
  - Corrective measures

### **How Much is Too Much?**

# DEPENDS...

### **Further Readings**

 Illicit Cyber Activity in the Banking and Finance Sector (Technical Report), by the US Secret Service and the CERT Coordination Center of the Carnegie Mellon University -

http://www.sei.cmu.edu/library/abstracts/reports/04tr021.cfm

- Computer Systems Sabotage in Critical Infrastructure Sectors, by the US Secret Service and the CERT Coordination Center of the Carnegie Mellon University – <u>http://www.cert.org/archive/pdf/insidercross051105.pdf</u>
- Association of Certified Fraud Examiners (ACFE) report on Occupational Fraud and Abuse - <u>http://www.acfe.com/documents/2006-RttN.pdf</u>
- Annual Computer Security Institute (CSI) & FBI's Computer Crime and Security Survey - <u>http://gocsi.com/survey</u>
- Deloitte's annual Global Security Survey <u>http://www.deloitte.com/view/en\_GX/global/industries/technology-media-</u>
   <u>telecommunications/c4d38a120c9a8210VgnVCM200000bb42f00aRCRD.htm</u>

#### **Q & A**



#### Catalin Bidian catalin.bidian@utoronto.ca