
WORKING WITH BROKEN APIs
DELIVERED LATE

 CTO, Rangle.io
Yuri Takhteyev

Some rights reserved - Creative Commons 2.0 by-sa

HACKSTACK.JS

• A common case: you build the client, someone
provides the API.

• The API team usually provides the API on time
and it works flawlessly.

• The API never changes.

Working with a backend API

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• Who knows what’s a good API? Hopefully you!

• Who will test the API? Probably you!

• When will it be ready?

The Reality

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• "It's working now." It's working but hasn't been tested and will
probably be redesigned as the project unfolds.

• "We'll have it in a few days." You'll see the API in a few weeks or
months.

• "We are working on it." You might have to complete all of your
work before the API is ready.

Translation Sheet

� Prepare for the worst: a broken API  
delivered late in the project.

Image by fuzzyyol

https://www.flickr.com/photos/fuzzyyol/4884815233

• A method for working with a broken API delivered late.

• Not a library or a tool – rather, a set of best practices based
on our experience.

“Hack Stack" to the Resque

Image by ejmc

• Actually, it is a library now: HackStack.JS.

https://www.flickr.com/photos/ejmc/4847838519

Why HackStack?

• Document the API.

• Use TDD.

• Mocking with online tools: too limiting.

• A mock server: can work well, but expensive.

• Client-side mocking: our preferred solution.

• HackStack.JS provides an implementation.

Mocking the API

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

Image by lincolnblues

Getting HackStack

� Version 0.1.0.

� Implementation by Brian Olynyk 
 & Ahmed Al-Sudani

Bower: bower install angular-hackstack

Github: https://github.com/rangle/hackstack

Slides: http://yto.io/xngu

https://www.flickr.com/photos/joelogon/2123079156
https://github.com/rangle/hackstack
http://yto.io/xngu

• We expect to eventually have a /birds/
endpoint that would give us REST access
to a collection of birds.

• We’ve agreed on what the returned JSON
would look like.

• We’ve also agreed on how problems are
going to be handled.

• Now we are waiting for the endpoint…

Scenario: /birds/

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

• Leave our “birds” service out of it: have it
work via an “api” service, which should
handle mocking (and other things).

• Put the actual mock data into a
“mockData” service or constant.

• Use HackStack.js for the common
functionality.

• Put additional mocking logic in separate
services.

Client-Side Mocking

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

The “Real” Service

.service('birds', function (api) {
 this.getAllBirds = function getAllBirds() {
 return api.getAll('birds');
 };

 this.getBird = function getBird(id) {
 return api.get('birds', id);
 };
});

The Mock Data: Keep It Separate

.constant('mockData', {
 birds: [
 {
 "id": 0,
 "name": "European robin",
 "scientificName": "Erithacus rubecula",
 "age": "55-60 million years",
 "img": “https://.../...jpg”
 }
],
 ...
});

• http://www.json-generator.com/

• https://www.uuidgenerator.net/

• https://placekitten.com/

Generating the Data

Image by lincolnblues

https://www.uuidgenerator.net/
https://placekitten.com/
https://www.flickr.com/photos/joelogon/2123079156

Implementing the Mockable API

.service('api', function(hackstack, mockData, ...) {
 ...
 var mockBirds = hackstack.mock(mockData.birds);
 $window.mockBirds = mockBirds;

� mockBirds is our mock endpoint.

Implementing the Mockable API, Cont.

this.getAll = function getAll(endpoint) {
 return getEndpoint(endpoint).getAll();
};

this.get = function get(endpoint) {
 return getEndpoint(endpoint).get();
};

� getEndpoint needs to return the 
 right endpoint.

Implementing the birds service.

.service('birds', function (api) {
 this.getAllBirds = function getAllBirds() {
 return api.getAll('birds');
 };

 this.getBird = function getBird(id) {
 return api.get('birds', id);
 };
});

� Higher level services shouldn’t  
 know about mocking.

• Mock API needs to match the eventual
“real” API.

• Which means it must be asynchronous.

• High-level code shouldn’t know about
mocking.

Key Points

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

• Slow connection. √

• Server-side errors. √

• Dropped connection.

• Loss of authentication.

• Values too short or too long.

• Etc.

Mock Likely Problems

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

Demo

Image by lincolnblues

https://www.flickr.com/photos/joelogon/2123079156

When the API Arrives

• Test it with Postman.

• Maybe test it with supertest.

Testing the API

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• Run the API server locally.

• Control your schedule.

• Set up a toggle between client-side mocks and the real
API.

• What about an incomplete API?

Dealing with Changes

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

• Mixing data from live API and mocks: hackstack.wrap.

• Filtering API data through a mock layer.

• Using a proxy server: e.g. for CORS.

Working in the Hybrid Mode

Image by torkildr

https://www.flickr.com/photos/tromal/6892743397

Mixing Real and Mock Data

var wrappedBirds = hackstack.wrap(birdsUrl,
 mockDataOverrides.birds);

Mixing Real and Mock Data

.constant('mockDataOverrides', {
 birds: {
 "name": "Lorem ipsum name",
 "scientificName": "Loremus ipsumus",
 "age": "~40 quadrillion years",
 "img": "images/rangle.jpg"
 }
});

Getting HackStack

Bower: bower install angular-hackstack

Github: https://github.com/rangle/hackstack

https://github.com/rangle/hackstack

THANK YOU!
Yuri Takhteyev

@qaramazov, @rangleio

https://github.com/rangle/hackstack

CTO, Rangle.io

https://github.com/rangle/hackstack

Image Credits

Images licensed through Creative Commons 2.0 Attribution license.

by torkildr by fuzzyyol

by ejmc by lincolnblues

https://www.flickr.com/photos/tromal/6892743397
https://www.flickr.com/photos/fuzzyyol/4884815233
https://www.flickr.com/photos/ejmc/4847838519
https://www.flickr.com/photos/joelogon/2123079156

